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Abstract
The best upper bound for the violation of the Clauser–Horne–Shimony–Holt
(CHSH) inequality was first derived by Tsirelson. For increasing number of
±1 valued observables on both sites of the correlation experiment, Tsirelson
obtained the Grothendieck’s constant (KG ≈ 1.73 ± 0.06) as a limit for the
maximal violation. In this paper, we construct a generalization of the CHSH
inequality with four ±1 valued observables on both sites of a correlation
experiment and show that the quantum violation approaches 1.58. Moreover,
we estimate the maximal quantum violation of a correlation experiment for
large and equal number of ±1 valued observables on both sites. In this case,
the maximal quantum violation converges to

√
3 ≈ 1.73 for very large n, which

coincides with the approximate value of Grothendieck’s constant.

PACS numbers: 42.50.Hz, 42.50.Dv, 42.65.Ky

1. Introduction

The seminal paper of Einstein, Podolsky and Rosen (EPR) [1], and Schrödinger’s article [2]
on quantum correlations of entangled states as well as Bell’s [3] subsequent discovery that
quantum theory is incompatible with any locally realistic, hidden variable theory have
generated substantial discussions and many experiments on the nature of quantum non-
locality. The violation of Bell’s inequality was the first mathematically sharp criterion for
entanglement. A quantum state is said to be unentangled, separable if and only if it can be
written as a convex combination of product states. In some cases, however, this criterion
fails to detect any entanglement. The standard example of the Bell inequality is the CHSH
inequality [4, 5], which refers to correlation experiments with two ±1 valued observables
on two sites. In this paper, we will only discuss the CHSH-type inequality. However, there
is an infinite hierarchy of such Bell-type inequalities, which can basically be classified by
specifying the type of correlation experiments they deal with. The CHSH inequalities are by
far the best-studied cases of Bell inequalities. The essential assumption leading to any Bell
inequality is the existence of a local realistic model, which describes the outcomes of a certain
class of correlation measurements. Various aspects of the hierarchy of Bell inequalities have
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already been investigated. Garg and Mermin [6], for instance, have resumed the idea of Bell
and discussed systems with maximal correlation. Gisin [7] investigated set-ups with more
than two dichotomic observables per site with arbitrary states, which we will also discuss in
the following section. Roy and Singh [8] have constructed a generalization of CHSH-type
inequality on the basis of the fact that the square of the sum of an odd number of terms which
takes values +1 or −1 is necessarily bounded below by 1 under assumption that squares of
all these terms are equal to one. N-particle generalizations of the CHSH inequality were
first proposed by Mermin [9], and further developed by Ardehali [10], Belinskii and Klyshko
[11], and others [12, 13]. The best upper bound for the violation of the CHSH inequality,
first derived by Tsirelson [14], is obtained by squaring the Bell operator and utilizing the
variance inequality [16]. For many parties with two dichotomic observables the complete set
of inequalities is known [17]. In the case of more than two dichotomic observables per site
only very little is known about the limit. In particular there is yet no explicit characterization
of the extremal inequalities, although constructing some inequalities, e.g. by chaining CHSH
inequalities [18] is not difficult. However, Tsirelson [14, 15] recognized that the quantum
correlation functions, which are in general rather cumbersome objects, can be reexpressed in
terms of finite-dimensional vectors in Euclidean space. For two observables on one site and
an arbitrary number on the other, Tsirelson showed that the maximal quantum violation is√

2. However, for an increasing number of observables on both sites, he obtained the upper
bound for Grothendieck’s constant KG (≈1.78), known from the geometry of Banach spaces,
as the limit for the maximal violation [19]. In particular, KG is the smallest number, such that,
for all integers n � 2, all n × n real matrices [aij ], and all s1, . . . , sn, t1, . . . , tn ∈ R such
that |si |, |tj | � 1 for which |∑i,j aij si tj | � 1, it is true that

∣∣∑
i,j aij 〈xi, yj 〉

∣∣ � KG, where
x1, . . . , xn, y1, . . . , yn such that ‖xi‖, ‖yj‖ � 1 are vectors in a real Hilbert space. Tsirelson
[14] showed that comparisons between probabilities in classical physics and probabilities in
quantum mechanics yield discrepancy measures Kn for finite n×n real matrices that approach
Grothendieck’s constant KG for very lager n. The exact value of KG is unknown. A lower
bound of π/2 was established by Grothendieck [20]. In a recent paper, P C Fishburn and
J A Reeds [21] showed that Kq(q−1) � (3q − 1)/(2q − 1) for q � 2 and K20 � 10

7 ; n = 20

is the smallest known n for which Kn >
√

2. In this paper, we will construct a generalization
of the CHSH inequality with four observables on both sites and show that maximal quantum
violation approaches

√
5
2 � 1.58. Moreover, we will estimate the maximal quantum violation

for very large numbers of observables per site in a correlation experiment.

2. The structure of the set of quantum correlations

In this section, we will define CHSH inequality and Tsirelson inequality as the best upper
bound for the violation of the CHSH inequality. First, let us define CHSH inequality as
follows. Let CorC(n,m) denote the set of classically representable matrices, whose matrix
elements are

〈Xk, Yl〉c =
∫

Xk(ϕ)Yl (ϕ) d(ϕ), (2.1)

where Xk, Yl are random variables satisfying |Xk| � 1, |Yl | � 1. Then, the CHSH inequality
is defined by

|〈X1, Y1〉c + 〈X1, Y2〉c + 〈X2, Y1〉c − 〈X2, Y2〉c| � 2. (2.2)

The CHSH inequality holds for any local-realistic theory. However, quantum correlation
violate the CHSH inequality, that is, let us consider the following observables

X̂k = X̂(1)
k ⊗ I(2) and Ŷl = I(1) ⊗ Ŷ(2)

l , (2.3)
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for all k = 1, 2, . . . , n and l = 1, 2, . . . , m, where I(j) is identity operator on the Hilbert space
Hj , such that the following relations are satisfied by these operators [X̂k, Ŷl] = 0 for all k and
l that is X̂k is compatible with each Ŷl . Hence for an arbitrary state ρ ∈ H1 ⊗H2, the quantum
correlation is measurable and ‖X̂j‖ � 1, ‖Ŷk‖ � 1 for all k and l. Thus we can define the
quantum correlation matrix C as

C = (〈X̂k, Ŷl〉ρ)k=1,2,...,n, l=1,2,...,m, (2.4)

where 〈X̂k, Ŷl〉ρ = Tr(ρX̂kŶl ). Now, let the convex set CorQ(n,m) be quantum-representable
matrices of some quantum observables X̂k, Ŷl as described above. The geometrical description
of this convex set follows from the following theorem [19, 22, 23]:

Theorem 2.1 (Tsirelson). The matrix C belongs to the set CorQ(n,m) if and only if there
exist vectors a1, a2, . . . , an and b1, b2, . . . , bm in the Euclidean space of dimension min(n,m),
such that ‖ak‖ � 1, ‖bl‖ � 1 and ak · bl = 〈X̂k, Ŷl〉ρ, for all k and l.

Now, let us define for n = m = 2 the Bell operator with the same structure as the
combination which appears on the CHSH inequality as B2,2 = X̂1Ŷ1 + X̂1Ŷ2 + X̂2Ŷ1 − X̂2Ŷ2.
Then, we have

B2
2,2 = 4I − [X̂1, X̂2][Ŷ1, Ŷ2], (2.5)

where we have assumed X̂2
k = Ŷ2

l = I for all k and l. From this inequality we can get the
CHSH inequality as

Tr(ρB2,2) = 〈X̂1, Ŷ1〉ρ + 〈X̂1, Ŷ2〉ρ + 〈X̂2, Ŷ1〉ρ − 〈X̂2, Ŷ2〉ρ � 2, (2.6)

whenever [X̂1, X̂2] = [Ŷ1, Ŷ2] = 0. The upper bound which gives the maximal violation of
CHSH is called Tsirelson inequality and is given by

Tr(ρB2,2) � 2
√

2, (2.7)

where for any observable Ẑ = X̂, Ŷ and ‖Ẑk‖ � 1, ‖Ẑl‖ � 1 for all k, l = 1, 2, we have
estimate |[̂Z1, Ẑ2]‖ as follows:

|[̂Z1, Ẑ2]‖ � ‖Ẑ1Ẑ2‖ + ‖Ẑ2Ẑ1‖
� ‖Ẑ1‖‖Ẑ2‖ + ‖Ẑ2‖‖Ẑ1‖ � 2. (2.8)

We will use this estimation in the next section when we derive an inequality for the case
n = m = 4 and will try to estimate the maximal violation of generalized CHSH inequality.

3. Maximal quantum violation

The maximal violation for an increasing number of observables on both sites of a correlation
experiment is still an unsolved problem. However, Tsirelson has obtained the Grothendieck’s
constant as a limit for the maximal violation. In this case we have

CorC(n,m) ⊂ CorQ(n,m). (3.1)

For example, the CHSH inequality provides a hyperplane separating the polyhedron CorC(2, 2)

from the quantum realizable matrixR2,2 = (
1 1
1 −1

)
, such thatR2,2 ∈ CorQ(2, 2). So it is natural

to ask how much CorQ(n,m) exceeds CorC(n,m). Let K(n,m) be the smallest number having
this property, that is

CorQ(n,m) ⊂ K(n,m) CorC(n,m). (3.2)
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Then this sequence increases with n and m. It was found by Tsirelson, from geometrical
description of the set CorQ(n,m), that

K = lim
n,m→∞K(n,m) (3.3)

coincides with the Grothendieck’s constant KG � π
2 ln(1+

√
2)

≈ 1.78 known from the geometry
of Banach spaces. In the next section, we will construct an generalized CHSH inequality with
more than two observables per site and show that for an arbitrary state this inequality has an
upper bound which is larger than the upper bound for CHSH inequality and it approaches the
approximate Grothendieck’s constant.

4. Beyond the Tsirelson inequality

In the case of correlation experiments with more than two dichotomic observables per site
only very little is known. So we will here go beyond this limit by allowing four dichotomic
observables per site. In this case (n = m = 4), we will consider an inequality that provides a
hyperplane separating the polyhedron CorC(4, 4) from the quantum realizable matrix

R4,4 = R2,2 ⊗ R2,2 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 , (4.1)

such that R4,4 ∈ CorQ(4, 4). Now, let Xk = ±1 and Yk = ±1 for all indices k = 1, 2, 3, 4.
Then we get the following inequality:

X1(Y1 + Y2 + Y3 + Y4) + X2(Y1 − Y2 + Y3 − Y4)

+ X3(Y1 + Y2 − Y3 − Y4) + X4(Y1 − Y2 − Y3 + Y4) � 8.

On the basis of this inequality, we obtain the generalized CHSH inequality as in equation (2.2)

|〈X1, Y1〉c + 〈X1, Y2〉c + 〈X1, Y3〉c + 〈X1, Y4〉c
+ 〈X2, Y1〉c − 〈X2, Y2〉c + 〈X2, Y3〉c − 〈X2, Y4〉c
+ 〈X3, Y1〉c + 〈X3, Y2〉c − 〈X3, Y3〉c − 〈X3, Y4〉c
+ 〈X4, Y1〉c − 〈X4, Y2〉c − 〈X4, Y3〉c + 〈X4, Y4〉c| � 8. (4.2)

Then we can get the following Bell operator with the same structure as the combination which
appears on the CHSH inequality as

B4,4 = (X̂1 X̂1 X̂3 X̂4)R4,4




Ŷ1

Ŷ2

Ŷ3

Ŷ4




= X̂1(Ŷ1 + Ŷ2 + Ŷ3 + Ŷ4) + X̂2(Ŷ1 − Ŷ2 + Ŷ3 − Ŷ4)

+ X̂3(Ŷ1 + Ŷ2 − Ŷ3 − Ŷ4) + X̂4(Ŷ1 − Ŷ2 − Ŷ3 + Ŷ4). (4.3)

Now, we will apply the same procedure as in the case of finding the upper bound for the
violation of the CHSH inequality, by squaring the Bell operator as follows:

B2
4,4 = [X̂1, X̂2]([Ŷ2, Ŷ3] + [Ŷ4, Ŷ3] + [Ŷ4, Ŷ1] + [Ŷ2, Ŷ1])

+ [X̂1, X̂3]([Ŷ4, Ŷ2] + [Ŷ4, Ŷ1] + [Ŷ3, Ŷ1] + [Ŷ3, Ŷ2])

+ [X̂1, X̂4]([Ŷ3, Ŷ4] + [Ŷ2, Ŷ1] + [Ŷ3, Ŷ1] + [Ŷ2, Ŷ4])
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+ [X̂2, X̂3]([Ŷ2, Ŷ4] + [Ŷ4, Ŷ3] + [Ŷ3, Ŷ1] + [Ŷ1, Ŷ2])

+ [X̂2, X̂4]([Ŷ2, Ŷ3] + [Ŷ3, Ŷ1] + [Ŷ1, Ŷ4] + [Ŷ4, Ŷ2])

+ [X̂3, X̂4]([Ŷ1, Ŷ4] + [Ŷ2, Ŷ1] + [Ŷ4, Ŷ3] + [Ŷ3, Ŷ2])

+ {X̂1, X̂2}({Ŷ1, Ŷ3} − {Ŷ2, Ŷ4}) + {X̂1, X̂3}({Ŷ1, Ŷ2} − {Ŷ3, Ŷ4})
+ {X̂1, X̂4}({Ŷ1, Ŷ4} − {Ŷ2, Ŷ3}) + {X̂2, X̂3}({Ŷ2, Ŷ3} − {Ŷ1, Ŷ4})
+ {X̂2, X̂4}({Ŷ3, Ŷ4} − {Ŷ1, Ŷ2})
+ {X̂3, X̂4}({Ŷ2, Ŷ4} − {Ŷ1, Ŷ3}) + 16I. (4.4)

In similarity with the CHSH inequality we can choose [X̂k, X̂l] = [Ŷk, Ŷl] = 0 for all k and l,
that is, these are commuting observables on both sites. The result is the following inequality:

B2
4,4 = 16I + {X̂1, X̂2}({Ŷ1, Ŷ3} − {Ŷ2, Ŷ4}) + {X̂1, X̂3}({Ŷ1, Ŷ2} − {Ŷ3, Ŷ4})

+ {X̂1, X̂4}({Ŷ1, Ŷ4} − {Ŷ2, Ŷ3}) + {X̂2, X̂3}({Ŷ2, Ŷ3} − {Ŷ1, Ŷ4})
+ {X̂2, X̂4}({Ŷ3, Ŷ4} − {Ŷ1, Ŷ2}) + {X̂3, X̂4}({Ŷ2, Ŷ4} − {Ŷ1, Ŷ3}). (4.5)

An estimation of this inequality gives

Tr(ρB4,4) � 8, (4.6)

where the observables satisfies ‖X̂k‖ � 1 and ‖Ŷl‖ � 1 for all k, l = 1, 2, 3, 4. Moreover,
we have supposed that the anticommutators does not vanish for these observables. Note
that X̂kX̂l = ±X̂lX̂k and ŶkŶl = ±ŶlŶk implies ŶkŶl = X̂kX̂l = 0. If we keep this in
mind, then we can get an upper bound of the maximal quantum violation for equation (4.2).
If we estimate the inequality without letting any of the observables commute on both sites,
then we get

Tr(ρB4,4) �
√

160 = 4
√

10. (4.7)

Now, we would like to compare this result with the Tsirelson upper bound for the CHSH
inequality, where 1

2 Tr(ρB2,2) �
√

2 � 1.41. For the generalized CHSH inequality with four
observables on both sites we get

1
8 Tr(ρB4,4) �

√
5
2 � 1.58, (4.8)

where we have used ‖{̂Zk, Ẑl}‖ � 2‖[̂Zk, Ẑl]‖ � 2 for Ẑ = X̂, Ŷ and for all k, l = 1, 2, 3, 4.
This estimation differs from the Tsirelson upper bound for the CHSH inequality because of
the existence of commutators and anti-commutators in the square of the Bell operator (4.4).
However, this is what we expect to get from Tsirelson’s idea that quantum correlation should
approach the Grothendieck’s constant as the number of observables increase on both sites of a
correlation experiment. Moreover, it is very difficult to show that these upper bound is tight,
that is, the equality is approached for some quantum state, this needs further investigations.

We can also generalize this result in a straightforward manner into a generalized CHSH
inequality with n = m = 2d dichotomic observables per site. In this case, we will consider
an inequality that provides a hyperplane separating the polyhedron CorC(2d , 2d) from the
quantum realizable matrix

R2d ,2d =
d︷ ︸︸ ︷

R2,2 ⊗ · · · ⊗ R2,2, (4.9)



11874 H Heydari

such that R2d ,2d ∈ CorQ(2d , 2d). On the basis of this idea, we can get the following Bell
operator

B2d ,2d = (X̂1 X̂1 · · · X̂2d )R2d ,2d




Ŷ1

Ŷ2

...

Ŷ2d


 . (4.10)

Now, we will apply the same procedure as in the case of four observables per site by
squaring the Bell operator B2d ,2d . Then we can write B2

2d ,2d in terms of commutator and
anticommutator. However, note that this estimation is only valid for d � 2 since for d = 1
we do not have any anticommutator in our expression for the Bell operator. Next, we choose
[X̂k, X̂l] = [Ŷk, Ŷl] = 0 for all k and l. An estimation of this inequality gives

Tr(ρB2d ,2d ) �
(

4
2d(2d − 1)

2
2d−1 + 22d

) 1
2

= 2
3
2 d , (4.11)

where the first term is a contribution from the anticommutators and second term from the
identity operators, which are the squares of the observables, that is X̂2

k = Ŷ2
l = I for all

k, l = 1, 2, . . . , 2d . Now, we can get an upper bound on the generalized CHSH inequality
(4.10) if we estimate the inequality without letting any of the observables commute on both
sites, that is

Tr(ρB2d ,2d ) �
(

4
2d(2d − 1)

2
2d + 4

2d(2d − 1)

2
2d−1 + 22d

) 1
2

= 2d(3 · 2d − 2)
1
2 , (4.12)

where the first term is a contribution from the commutators. Thus in the general case with 2d

observables per site we get
1

2
3
2 d

Tr(ρB2d ,2d ) � 2− d
2 (3 · 2d − 2)

1
2 . (4.13)

Let us analyse this inequality. For a CHSH inequality with two observables per site this
estimation does not work since there is no contribution from anticommutator in this inequality.
In the case of four observables per site, we get the same result as in equation (4.8) that
is 1

23 Tr(ρB22,22) �
√

5
2 . And finally, for a very large number of observables per site, that

is whenever d → ∞, we have limd→∞ 1

2
3d
2

Tr(ρB2d ,2d ) �
√

3 ≈ 1.73. This is less than

upper bound for the Grothendieck’s constant (≈1.782). However, it almost coincides with the
approximate value of Grothendieck’s constant. Note that on the basis of Tsireslson’s result the
Grothendieck’s constant plays the same role for correlation matrices of any size as

√
2 plays

in the case of 2 × 2 correlation matrices. Moreover, on the basis of Tsirelson’s theorem 2.1,
there exist sets of real unit vectors in the Euclidean space that gives the maximal quantum
violation. Thus, on the basis of these results, it follows that the maximal quantum violation
increases with the number of observables per site and approaches the maximum value

√
3.

But we cannot show that this bound is indeed approached. Tsirelson [23] also has discussed
the difficultly to find a quantum state that gives the maximal quantum violation for a given
CHSH type inequality.

5. Conclusion

In this paper, we have constructed an especial type of the CHSH inequality with four
observables per site of a correlation experiment and we have shown that for an arbitrary state
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the quantum violation is higher than the Tsirelson bound for the CHSH inequality. Moreover,
we have estimated the maximal quantum violation for very large but equal number observables
on both sites of a correlation experiment. The estimation shows that in this case the maximal
quantum violation converges to

√
3 ≈ 1.73, which coincides with Grothendieck’s constant.

This result also can be seen as an indirect estimation of Grothendieck’s constant. However,
this estimation needs further investigation. The approximative value of this constant was
pointed out by Tsirelson [23]. We should mention that the CHSH inequality does not include
any anticommutator but a generalized CHSH inequality does include both commutators and
anticommutators. In our estimation, we have assumed that the values of these commutators
and anticommutators do coexist simultaneously and contribute to an estimation of the maximal
quantum violation. We also should mention that exact value of the Grothendieck constant is
not yet known and our results could be interesting for the research on this subject.
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